Two-Level Logic Synthesis -- Quine-McCluskey Method

Two-Level Logic

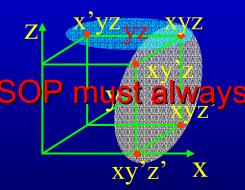
- > What is Two-Level Logic?
- > Why Two Levels?
 - = Universal
 - = Speed
 - = Simplicity
- > Typical Two Level Circuits: AND-OR, OR-AND, NAND-NAND, NOR-NOR
- > Cost Functions in Two-Level Circuits
 - = Number of gates
 - = Number of fanin (gate inputs)

Quine's PI Theorem

> Review: Implicants and PIs:

Let $f: B^n \rightarrow B$

- = A minterm is an implicant if the corresponding discriminant is 1.
- An implicant with k literals has 2^{n-k} such minterms, who share these k literals.
- = An implicant $I_1 \bullet \bullet I_k$ is prime iff $I_1 \bullet \bullet \bullet I_{j-1}I_{j+1} \bullet \bullet \bullet I_k$ is not an implicant for all $1 \le j \le k$.
- = In the cubical representation, for an implicant with k literals,
 - *k* = *n*: a vertex (minterm)
 - *k* = *n*-1: an edge
 - *k* = *k*: an (*n*-*k*)-dimension face (plane)
- > (Quine's Theorem [1952]) A minimal SOP must always consist of a sum of prime implicants.
- > Minimal in terms of number of literals



Computing Pls: Tabular Method

- f(w,x,y,z) = x'y' + wxy + x'yz' + wy'z1. Rewrite in minterm canonical form; f(w,x,y,z) = (wx'y'z + wx'y'z' + w'x'y'z + w'x'y'z') + (wxyz + wxyz') + (wx'yz' + w'x'yz') + (wxy'z + wxyz') + (wxy'z + wx'y'z')
- 2. Group by number of complement literals;
- 3. Merge terms in adjacent groups;
 - Xy + Xy' = X -- distance-1 merging
- 4. Repeat step 3. until no new term is created.

f(w,x,y,z) = (wx'y'z+wx'y'z'+w'x'y'z+w'x'y'z')+(wxyz+wxyz')+(wx'yz'+w'x'yz')+(wxy'z)

wxyz	X	wxy		
		wxz		
wxyz'	X	wyz'		
wxy'z	X	wy'z		
wx'y'z	X	wx'y'	X	x'y'
wx'yz'	X	x'y'z	X	x'z'
		wx'z'	X	
		x'yz'	X	
wx'y'z'	X	x'y'z'	X	
w'x'y'z	X	w'x'y'	X	
w'x'yz'	X	w'x'z'	X	
w'x'y'z'	X			

Check for: Xy + Xy' = X

All prime implicants: wxy, wxz, wyz', wy'z, x'y', x'z'

Computing Pls: Iterated Consensus Method

- > Start with: SOP standard form (as compared to the canonical form in Tabular Method)
- > Goal: sum of all Pls -- complete sum
- > Basic idea: xY + x'Z = xY + x'Z + YZ -- consensus law
- Theorem: A SOP formula is a complete sum iff
 = No term includes any other term;
 - = The consensus of any two terms either does not exist or is contained in some term.

Example: Iterated Consensus Method f(w,x,y,z) = wx + x'y + xyz + xyz + x'y + xyz + wy + yz = wx + x'y + xyz + wy + yz

 Start with any SOP form
 Need to compare every pair of terms Do they have consensus?
 Does one contain the other?

Computing Pls: Recursive Method

- > Basic idea: if F₁ and F₂ are complete sums, the complete sum of F₁•F₂ can be obtained by:
 - = Expanding F₁ and F₂ to POS (Boole's Expansion)
 - = Multiplying out F₁ and F₂ by distributive law
 - = Applying x •x=x and x •x'=0
 - = Eliminating all terms that are contained in others
- > Example: f(w,x,y,z) = (w+x)(x'+y)(y+z)
 - = (wx'+wy+xx'+xy)(y+z)
 - = wx'y+wx'z+wyy+wyz+xyy+xyz
 - = wy+xy+wx'y+wx'z+wyz+xyz
 - = wy+xy+wx'z

Computing the PIs: Recursive Method

- > Given f(x,y,z....)= (x' + f(1,y,z..))(x + f(0,y,z...))
 (Boolean Expansion)
- > C-S(f) = ABSORB((x' +C-S(f(1,y,z..))(x + C-S(f(0,y,z...)))
- > Essentially a recursive procedure. ABSORB is a manifestation of the result outlined in the previous slide.

Compute Complete Sum by Recursion Tree

f(w,x,y,z) = w'y'z + xyz + wyz' + wx'y'f(0,x,y,z) = y'z + xyz = (y+z)(y'+xz) = y'z + xz0 (W) f(0,x,0,z) = zf(0,x,1,z) = xz = (x+0)(x'+z) = xzf(0,0,1,z)=0f(0, 1, 1, z) = zΖ X f(1,x,y,z) = xyz + yz' + x'y' = (y+x')(y'+x+z')=xy+yz'+x'y'+x'z'0 z 1 X f(1, x, 0, z) = x'f(1,x,1,z) = xz+z' = (z+1)(z'+x) = x+z'f(w,x,y,z)f(1,x,1,0) = 1 $f(x) = (x + f(0))^{2}$ = (w+y'z+xz)(w'+xy+yz'+x'y'+x'z')f(1,x,1,1) = x• (x'+f(1))= wxy+wyz'+wx'y'+wx'z'+w'y'z+x'y'z+w'xz+xyz

Quine-McCluskey Method

Problem: Given a Boolean function *f* (may be incomplete), find a minimum **cost** SOP formula.

of literals

Q-M Procedure:

- 1. Generate all the PIs of *f*, {P_i}
- 2. Generate all the minterms of *f*, {m_i}
- 3. Build the Boolean constraint matrix B, where B_{ij} is 1 if $m_i \in P_i$ and is 0 otherwise
- 4. Solve the minimum column covering problem for B

Example: Quine-McCluskey Method

f(w,x,y,z) = x'y' + wxy + x'yz' + wy'z

	wxy	WXZ	wyz'	wy'z	x'y'	x'z'
wx 'y 'z '					1	1
w'x'y'z					1	
w'x'y'z'					1	1
wxyz	1	1				
wxyz'	1		1			
wx 'yz '			1			1
w'x'yz'						1
wxy'z		1		1		
wx 'y 'z				1	1	

minimum cover(s):
{x'y', x'z',wxy, wxz},
{x'y', x'z',wxy, wy'z},
{x'y', x'z',wxz, wyz'}.

More on Quine-McCluskey Method

- > Goal: find a minimum SOP form
- > Why We Need to Find all PIs?

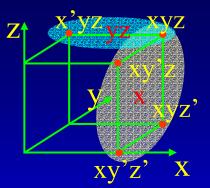
f(w,x,y,z) = x'y' + wxy + x'yz' + wy'z

- = x'y'+x'z'+wxy+wy'z
- = x'y' + x'z' + wxy + wxz
- = x'y' + x'z' + wxz + wyz'
- > How We Find Them?
 - = Quine's tabular: start with minterm, the smallest I
 - = Iterated consensus: complete sum theorem
 - = Recursive: complete sum theorem

- 1. Are all terms Pls?
- 2. Is the form optimal?
- 3. Is the form unique?

Quine's PI Theorem

> Review: Implicants and PIs: Let $f: B^n \rightarrow B$



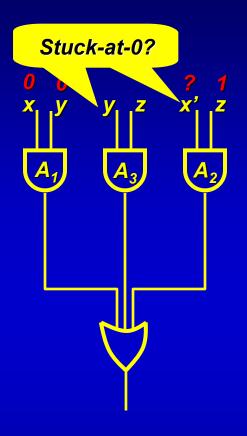
- = A minterm is an implicant if the corresponding discriminant is 1.
- An implicant with k literals has 2^{n-k} such minterms, who share these k literals.
- = An implicant $I_1 \bullet \bullet I_k$ is prime iff $I_1 \bullet \bullet \bullet I_{j-1}I_{j+1} \bullet \bullet \bullet I_k$ is not an implicant for all $1 \le j \le k$.
- = In the cubical representation, for an implicant with k literals,
 - *k* = *n*: a vertex (minterm)
 - *k* = *n*-1: an edge
 - *k* = *k*: an (*n*-*k*)-dimension face (plane)

> (Quine's Theorem [1952]) A minimal SOP must always consist of a sum of prime implicants.

Testability

- > Testability
- > Stuck-at-0/1 Fault Model
- > Redundant Gate
- > Untestable Fault

A₃=1: y=1, z=1 A₁=0: x=0 A₂=x'z=1



An area-optimal circuit must be fully testable for stuck-at faults.