
FPGA technology in detail
FPGAs are chips, which are programmed by the customer to perform the desired 
functionality. The chips may be programmed either

once: Antifuse technology, e.g. devices manufactured by Quicklogic
several times: Flash based, e.g. devices manufactures by Actel
dynamically: SRAM based, e.g. devices manufactured by Actel, Altera, 
Atmel, Cypress, Lucent, Xilinx

Each technology has its own advantages, which shall be discussed only very 
briefly:

Antifuse FPGAs:
devices are configured by burning a set of fuses. Once the chip is 
configured, it cannot be altered any more.
bug fixes and updates possible for new PCBs, but hardly for already 
manufactured boards.
ASIC replacement for small volumes.

Flash FPGAs
devices may be re-programmed several thousand times and are non-
volatile, i.e. keep their configuration after power-off
with only marginal additional effort, the chips may be updated in the field
expensive
re-configuration takes several seconds

SRAM FPGAs
currently the dominating technology
unlimited re-programming
additional circuitry is required to load the configuration into the FPGA after 
power-on
re-configuration is very fast, some devices allow even partial re-
configuration during operation
allows new approaches and applications- buzzword reconfigurable 
computing, e.g. a circuit, that searches for a specific DNA pattern, or a 
mobile phone that downloads the latest protocol update

General Overview
There are several families of FPGAs available from different semiconductor 
companies. These device families slightly differ in their architecture and feature set, 
however most of them follow a common approach: A regular, flexible, 
programmable architecture of Configurable Logic Blocks (CLBs), surrounded by a 
perimeter of programmable Input/Output Blocks (IOBs). These functional 
elements are interconnected by a powerful hierarchy of versatile routing channels.
The following paragraphs describe the architecture implemented by Xilinx Spartan-
II FPGAs, a device family launched in mid 2000, which is typically used in high-
volume applications where the versatility of a fast programmable solution adds 
benefits.
The user-programmable gate array, shown in Figure 15, is composed of five major 
configurable elements:

IOBs provide the interface between the package pins and the internal logic
CLBs provide the functional elements for constructing most logic
Dedicated BlockRAM memories of 4096 bits each
Clock DLLs for clock-distribution delay compensation and clock domain 
control
Versatile multi-level interconnect structure

SoC Course WS 2002/2003 Week #2

page 1



As can be seen in Figure 15, the CLBs form the central logic structure with easy 
access to all support and routing structures. The IOBs are located around all the 
logic and memory elements for easy and quick routing of signals on and off the 
chip.

Figure 15: Basic Spartan-II Block Diagram
Values stored in static memory cells control all the configurable logic elements and 
interconnect resources. These values load into the memory cells on power-up, and 
can reload if necessary to change the function of the device.

Figure 16: FPGA Slice

SoC Course WS 2002/2003 Week #2

page 2



Configurable Logic Block
The basic building block of the CLBs is the logic cell (LC). An LC includes a 4-
input function generator, carry logic, and a storage element. The output from the 
function generator in each LC drives both the CLB output and the D input of the 
flip-flop. Each CLB contains four LCs, organized in two similar slices; a single slice 
is shown in Figure 16.
In addition to the four basic LCs, the CLBs contains logic that combines function 
generators to provide functions of five or six inputs. Consequently, when 
estimating the number of system gates provided by a given device, each CLB 
counts as 4.5 LCs.
Look-Up Tables
The function generators are implemented as 4-input look-up tables (LUTs). In 
addition to operating as a function generator, each LUT can provide a 16x1-bit 
synchronous RAM. Furthermore, the two LUTs within a slice can be combined to 
create a 16x2-bit or 32x1-bit synchronous RAM, or a 16x1-bit dual-port 
synchronous RAM.
The LUT can also provide a 16-bit shift register that is ideal for capturing high-
speed or burst-mode data. This mode can also be used to store data in 
applications such as Digital Signal Processing. See Figure 17 for details on slice 
configuration.

Figure 17: Slice Configuration

SoC Course WS 2002/2003 Week #2

page 3



Storage Elements
The storage elements in the Spartan-II slice can be configured either as edge-
triggered D-type flip-flops or as level-sensitive latches. The D inputs can be driven 
either by the function generators within the slice or directly from slice inputs, 
bypassing the function generators
In addition to Clock and Clock Enable signals, each slice has synchronous set and 
reset signals (SR and BY). SR forces a storage element into the initialization state 
specified for it in the configuration. BY forces it into the opposite state. Alternatively, 
these signals may be configured to operate asynchronously.
All of the control signals are independently invertible, and are shared by the two 
flip-flops within the slice.
Additional Logic
The F5 multiplexer in each slice combines the function generator outputs. This 
combination provides either a function generator that can implement any 5-input 
function, a 4:1 multiplexer, or selected functions of up to nine inputs.
Similarly, the F6 multiplexer combines the outputs of all four function generators in 
the CLB by selecting one of the F5-multiplexer outputs. This permits the 
implementation of any 6-input function, an 8:1 multiplexer, or selected functions of 
up to 19 inputs. Usage of the F5 and F6 multiplexer is shown in Figure 18.

Figure 18: F5 and F6 Multiplexer
Each CLB has four direct feedthrough paths, one per LC. These paths provide 
extra data input lines or additional local routing that does not consume logic 
resources.

SoC Course WS 2002/2003 Week #2

page 4



Arithmetic Logic
Dedicated carry logic provides fast arithmetic carry capability for high-speed 
arithmetic functions. The CLBs supports two separate carry chains, one per slice. 
The height of the carry chains is two bits per CLB.
The arithmetic logic includes an XOR gate that allows a 1-bit full adder to be 
implemented within an LC. In addition, a dedicated AND gate improves the 
efficiency of multiplier implementation. The dedicated carry path can also be used 
to cascade function generators for implementing wide logic functions.
BUFTs
Each CLB contains two 3-state drivers (BUFTs) that can drive on-chip busses 
(see Dedicated Routing for further details). Each Spartan-II BUFT has an 
independent 3-state control pin and an independent input pin.The 3-state drivers in 
conjunction with the on-chip busses may be used to implement wide multiplexers 
efficiently.

Input/Output Block
The IOB, as seen in Figure 19, features inputs and outputs that support a wide 
variety of I/O signaling standards. These high-speed inputs and outputs are 
capable of supporting various state of the art memory and bus interfaces. Table 1 
lists several of the standards which are supported along with the required reference, 
output and termination voltages needed to meet the standard.

Figure 19: Input/Output Block (IOB)
The three IOB registers function either as edge-triggered D-type flip-flops or as 
level- sensitive latches. Each IOB has a clock signal (CLK) shared by the three 
registers and independent Clock Enable (CE) signals for each register.
In addition to the CLK and CE control signals, the three registers share a Set/Reset 
(SR). For each register, this signal can be independently configured as a 
synchronous Set, a synchronous Reset, an asynchronous Preset, or an 
asynchronous Clear.

SoC Course WS 2002/2003 Week #2

page 5



N/A3.31.32AGP-2X
1.53.31.5CTT

1.252.51.25SSTL2 
Class I and II

1.53.31.5SSTL3 
Class I and II

1.51.50.9HSTL Class IV
1.51.50.9HSTL Class III
0.751.50.75HSTL Class I
1.5N/A1.0GTL+
1.2N/A0.8GTL

N/A3.3N/APCI (3V/5V,
33 MHz/66 MHz)

N/A2.5N/ALVCMOS2
N/A3.3N/ALVTTL (2-24 mA)

Board Termination
Voltage (Vtt)

Output Source 
Voltage (Vcco)

Input Reference
Voltage (Vref)

I/O Standard

Table 1: Standards Supported by IOB
Optional pull-up and pull-down resistors and an optional weak-keeper circuit are 
attached to each pad. Prior to configuration all outputs not involved in configuration 
are forced into their high-impedance state. The pull-down resistors and the weak-
keeper circuits are inactive, but inputs may optionally be pulled up.
Input Path
A buffer In the IOB input path routes the input signal either directly to internal logic 
or through an optional input flip-flop.
An optional delay element at the D-input of this flip-flop eliminates pad-to-pad hold 
time. The delay is matched to the internal clock-distribution delay of the FPGA, and 
when used, assures that the pad-to-pad hold time is zero.
Each input buffer can be configured to conform to any of the low-voltage signaling 
standards supported. In some of these standards the input buffer utilizes a user-
supplied threshold voltage, Vref. The need to supply Vref imposes constraints on 
which standards can be used in close proximity to each other.
Output Path
The output path includes a 3-state output buffer that drives the output signal onto 
the pad. The output signal can be routed to the buffer directly from the internal logic 
or through an optional IOB output flip-flop.
The 3-state control of the output can also be routed directly from the internal logic or 
through a flip-flip that provides synchronous enable and disable.
Each output driver can be individually programmed for a wide range of low-voltage 
signaling standards. Each output buffer can source up to 24 mA and sink up to 48 
mA. Drive strength and slew rate controls minimize bus transients.
In most signaling standards, the output high voltage depends on an externally 
supplied Vcco voltage. The need to supply Vcco imposes constraints on which 
standards can be used in close proximity to each other.

SoC Course WS 2002/2003 Week #2

page 6



An optional weak-keeper circuit is connected to each output. When selected, the 
circuit monitors the voltage on the pad and weakly drives the pin High or Low to 
match the input signal. If the pin is connected to a multiple-source signal, the weak 
keeper holds the signal in its last state if all drivers are disabled. Maintaining a valid 
logic level in this way helps eliminate bus chatter.

Programmable Routing Matrix
It is the longest delay path that limits the speed of any worst-case design. 
Consequently, the routing architecture and the place-and-route software have to be 
defined in a single optimization process. This joint optimization minimizes long-path 
delays, and consequently, yields the best system performance.
The joint optimization also reduces design compilation times because the 
architecture is software-friendly. Design cycles are correspondingly reduced due to 
shorter design iteration times.
Local Routing
The local routing resources, as shown in Figure 20, provide the following three 
types of connections:

Interconnections among the LUTs, flip-flops, and General Routing Matrix 
(GRM)
Internal CLB feedback paths that provide high-speed connections to LUTs 
within the same CLB, chaining them together with minimal routing delay
Direct paths that provide high-speed connections between horizontally 
adjacent CLBs, eliminating the delay of the GRM. 

Figure 20: Local Routing

SoC Course WS 2002/2003 Week #2

page 7



General Purpose Routing
Most signals are routed on the general purpose routing, and consequently, the 
majority of interconnect resources are associated with this level of the routing 
hierarchy. The general routing resources are located in horizontal and vertical routing 
channels associated with the rows and columns CLBs. The general-purpose 
routing resources are listed below.

Adjacent to each CLB is a General Routing Matrix (GRM). The GRM is the 
switch matrix through which horizontal and vertical routing resources connect, 
and is also the means by which the CLB gains access to the general 
purpose routing.
24 single-length lines route GRM signals to adjacent GRMs in each of the 
four directions.
96 buffered Hex lines route GRM signals to other GRMs six blocks away in 
each one of the four directions. Organized in a staggered pattern, Hex lines 
may be driven only at their endpoints. Hex-line signals can be accessed 
either at the endpoints or at the midpoint (three blocks from the source). One 
third of the Hex lines are bidirectional, while the remaining ones are 
unidirectional.
12 Longlines are buffered, bidirectional wires that distribute signals across the 
device quickly and efficiently. Vertical Longlines span the full height of the 
device, and horizontal ones span the full width of the device.

Figure 21: General Purpose Routing
I/O Routing
Devices may have additional routing resources around their periphery that form an 
interface between the CLB array and the IOBs. This additional routing, called the 
VersaRing, facilitates pin-swapping and pin-locking, such that logic redesigns can 
adapt to existing PCB layouts. Time-to-market is reduced, since PCBs and other 
system components can be manufactured while the logic design is still in progress.

SoC Course WS 2002/2003 Week #2

page 8



Dedicated Routing
Some classes of signals require dedicated routing resources to maximize 
performance. In recent architectures, dedicated routing resources are provided for 
two classes of signals:

Horizontal routing resources are provided for on-chip 3-state busses. Four 
partitionable bus lines are provided per CLB row, permitting multiple busses 
within a row, as shown in Figure 22.
Two dedicated nets per CLB propagate carry signals vertically to the 
adjacent CLB.

Figure 22: BUFT Connections to Dedicated Horizontal Bus Lines
Global Routing
Global Routing resources distribute clocks and other signals with very high fanout 
throughout the device. Recent devices include two tiers of global routing resources 
referred to as primary and secondary global routing resources.

The primary global routing resources are four dedicated global nets with 
dedicated input pins that are designed to distribute high-fanout clock signals 
with minimal skew. Each global clock net can drive all CLB, IOB, and block 
RAM clock pins. The primary global nets may only be driven by global 
buffers. There are four global buffers, one for each global net.
The secondary global routing resources consist of 24 backbone lines, 12 
across the top of the chip and 12 across bottom. From these lines, up to 12 
unique signals per column can be distributed via the 12 longlines in the 
column. These secondary resources are more flexible than the primary 
resources since they are not restricted to routing only to clock pins.

Clock Distribution
Typical FPGA families provide high-speed, low-skew clock distribution through the 
primary global routing resources described above. A typical clock distribution net is 
shown in Figure 23.
Four global buffers are provided, two at the top center of the device and two at the 
bottom center. These drive the four primary global nets that in turn drive any clock 
pin.
Four dedicated clock pads are provided, one adjacent to each of the global buffers. 
The input to the global buffer is selected either from these pads or from signals in 
the general purpose routing.

SoC Course WS 2002/2003 Week #2

page 9



Figure 23: Global Clock Distribution Network
Delay-Locked Loop (DLL)
Associated with each global clock input buffer is a fully digital Delay-Locked Loop 
(DLL) that can eliminate skew between the clock input pad and internal clock-input 
pins throughout the device. Each DLL can drive two global clock networks. The 
DLL monitors the input clock and the distributed clock, and automatically adjusts a 
clock delay element. Additional delay is introduced such that clock edges reach 
internal flip-flops exactly one clock period after they arrive at the input. This closed-
loop system effectively eliminates clock-distribution delay by ensuring that clock 
edges arrive at internal flip-flops in synchronism with clock edges arriving at the 
input.
In addition to eliminating clock-distribution delay, the DLL provides advanced 
control of multiple clock domains. The DLL provides four quadrature phases of the 
source clock, can double the clock, or divide the clock by 1.5, 2, 2.5, 3, 4, 5, 8, or 
16. It has six outputs. The DLL also operates as a clock mirror. By driving the 
output from a DLL off-chip and then back on again, the DLL can be used to 
deskew a board level clock among multiple Spartan-II devices.
In order to guarantee that the system clock is operating correctly prior to the FPGA 
starting up after configuration, the DLL can delay the completion of the configuration 
process until after it has achieved lock.

SoC Course WS 2002/2003 Week #2

page 10



Block RAM
Recent FPGA families incorporate several large block RAM memories. These 
complement the distributed RAM Look-Up Tables (LUTs) that provide shallow 
memory structures implemented in CLBs. The number of memory blocks 
depends on the size of the FPGA device, e.g. a Xilinx XC2S200 device contains 
14 blocks totalling to 56k bits of memory
Each block RAM cell, as illustrated in Figure 24, is a fully synchronous dual-ported 
4096-bit RAM with independent control signals for each port. The data widths of 
the two ports can be configured independently, providing built-in bus-width 
conversion.

Figure 24: Dual-port Block RAM

SoC Course WS 2002/2003 Week #2

page 11



Gate count metrics
Introduction
Every user of programmable logic at some point faces the question: „How large a 
device will I require to fit my design?“ In an effort to provide guidance to their users, 
FPGA manufacturers describe the capacity of FPGA devices in terms of „gate 
counts“. Gate counting involves measuring logic capacity in terms of the number of 
2-input NAND gates that would be required to implement the same number and 
type of logic functions. The resulting capacity estimates allow users to compare the 
relative capacity of different FPGA devices.
Xilinx uses three metrics to measure the capacity of FPGAs in terms of both gate 
counts and bits of memory: „Maximum Logic Gates“, „Maximum Memory Bits“, 
and „Typical Gate Range“.
Maximum Logic Gates
„Maximum Logic Gates“ is the metric used to estimate the maximum number of 
gates that can be realized in the FPGA device for a design consisting of only logic 
functions. (On-chip memory capabilities are not factored into this metric.) This metric 
is based on an estimate of the typical number of usable gates per configurable 
logic block or logic cell multiplied by the total number of such blocks or cells. This 
estimate, in turn, is based on an analysis of the architecture of the logic block and 
empirical data obtained by comparing the implementation of entire system-level 
designs in the FPGA devices and traditional gate arrays. 
The slices of the Spartan-II Series devices each contain three function generators 
and two registers (Figure 16). Additional resources in the block include dedicated 
arithmetic carry logic. Using Table 2 as a guide, the potential gate count for a single 
slice can be derived. The table lists the gate counts for a sampling of logic functions; 
these gate counts are taken directly from a typical mask-programmed gate arrayís 
library.)

12D flip-flop with reset and enable

8D flip-flop with set or reset

6D flip-flop

Register functions

92-bit carry-save full adder

94-input XOR

63-input XOR

42-to-1 Multiplexer

12-input NAND

Combinational functions

GatesFunct ion

Table 2: Gate Counts for Common Functions

SoC Course WS 2002/2003 Week #2

page 12



The function generators are implemented as memory look-up tables (LUTs); the F 
and G function generators are 4-input LUTs, and the H function generator is a 3-
input LUT. Each LUT is capable of generating any logic function of its inputs; thus, in 
a given application, a 4-input LUT might be used for any operation ranging from a 
simple inverter or 2-input NAND (1 gate) to a complex function of 4 inputs, such as 
a 4-input exclusive-OR (9 gates) or, along with the built-in carry logic, a 2-bit full 
adder (9 gates). Similarly, the registers in the CLB account for anywhere from 6 to 
12 equivalent gates each, dependent on whether built-in functions such as the 
asynchronous preset/clear and clock enable are utilized.

28.5Estimated typical number of
gates per slice

15 to 48Total gate range per slice

6 to 12Gate range per flip-flop (2 per slice)
1 to 6Gate range per 3-input LUT

1 to 9Gate range per 4-input LUT (2 per slice)

Gate RangeCLB Resource

Table 3: Capacity ranges for CLB slice Resources
Thus, assuming that all three LUTs and both flip-flops are utilized, a single CLB 
slice may hold anywhere from 15 to 48 gates of logic (Table 3). Using empirical 
data based on the compilation of system-level designs, the actual obtainable 
usage is estimated as about 28.5 gates per Spartan-II Series slice.
Of course, in a given application, all the resources in every CLB will not be utilized. 
Therefore, this metric is a maximum in that it assumes that every CLB is being 
used. This simple analysis does not take into account the many other logic 
resources available in the FPGA architecture, including on-chip three-state buffers, 
global clock buffers, global reset, the registers and multiplexers in the I/O blocks, 
readback circuitry, and JTAG boundary scan test circuitry.
Maximum Memory Bits
Some FPGA devices, such as the are capable of integrating RAM or ROM 
memory functions as well as logic functions on chip. This metric, quite simply, is the 
maximum number of memory bits that can be implemented on the device.
The F and G function generators optionally can be configured as a 32x1 or 16x2 
block of asynchronous or synchronous RAM or ROM memory. Thus the maximum 
distributed RAM bits are the number of slices multiplied by 32. In addition to the 
distributed RAM, recent FPGA families offers a number of block RAMs, each 
providing 4k bits of memory.
Typical Gate Range
FPGA users should realize that there can be considerable variation in the logic 
capacity of a given FPGA device dependent on factors such as how well the 
application‘s logic functions match the architecture of the FPGA device, the 
efficiency of the tools used to synthesize the logic and map, place, and route the 
device in the FPGA, and the skill and experience of the designer. For example, a 
given design is unlikely to use every available CLB or logic cell. For this reason, 
the Maximum Logic Gates metric is complemented with a Typical Gate Range 
estimate. Based on empirical data, this metric is intended to set realistic 
expectations by providing both a low end and high end estimate of FPGA 
capacity.

SoC Course WS 2002/2003 Week #2

page 13



Most large system-level designs will include some memory as well as logic 
functions, and it is reasonable to assume that some memory functions would be 
implemented on an FPGA in the typical system. FPGA architectures allow the on-
chip integration of memory as well as logic functions, and the Typical Gate Range 
capacity metric takes this capability into account. In a sea-of-gates gate array, 
memory functions require about 4 logic gates per bit of memory. Thus, each 
Spartan-II Series slice is capable of implementing 32x4=128 gates of memory 
functions. 
The low end of the Typical Gate Range assumes that all the CLBs are used for 
logic, with a utilization of about 18 gates/slice. In addition, about 10% of the block 
RAM resources are used. Table 4 summarizes the calculation for a Xilinx 
XC2S200 device.

6 5 , 2 7 4Total

22,93810% of Block Memory:
0.1 x 14 Blocks x 4096 bits/ Block
@ 4 gates/ bit

42,336100% Logic:
1.0 x 1176 CLBs x 2 slices/ CLB
@ 18 gates/ slice

GatesResource

Table 4: XC2S200 Low End of Gate Range
The high end of the Typical Gate Range assumes 20% of the CLBs are used as 
memory, and the remaining CLBs are used as logic, with 128 gates/CLB for 
memory functions and 26 gates/slice for logic functions. Furthermore, 40% of the 
block RAMs are utilized and add to the capacity. Table 5 summarizes the 
calculation for a Xilinx XC2S200 device.

2 0 0 , 8 8 3Total

91,75040% of Block Memory:
0.4 x 14 Blocks x 4096 bits/ Block
@ 4 gates/ bit

60,21120% Distributed Memory:
0.2 x 1176 CLBs x 2 slices/ CLB
@ 128 gates/ slice

48,92280% Logic:
0.8 x 1176 CLBs x 2 slices/ CLB
@ 26 gates/ slice

GatesResource

Table 5: XC2S200 High End of Gate Range

SoC Course WS 2002/2003 Week #2

page 14



Using Gate Counts as Capacity Metrics
As long as the metrics used to establish gate counts are fairly consistent across 
product families, these metrics are useful when migrating between FPGA families, 
or when applying the experience gained using one family to help select the 
appropriately-sized device in another family. The gate count metrics also are a 
good indicator of relative device capacities within each FPGA family, although 
comparing the number of CLBs or logic cells among the members of a given 
family provides a more direct measure of relative capacity within that family.
Unfortunately, claimed gate capacities are not a very good metric for comparing the 
density of FPGAs from different vendors. There is considerable variation in the 
methodologies used by different FPGA manufacturers to ìcount gatesî in their 
products. A better methodology for comparing the relative logic capacity of 
competing manufacturersí devices is to examine the type and number of logic 
resources provided in the device.
Footprint Compatibility Lessens Risk
Designers do not always guess right when initially selecting the FPGA family 
member most suitable for their design. Thus, footprint compatibility is an important 
feature for maximizing the flexibility of FPGA designs. Footprint compatibility refers 
to the availability of FPGAs of various gate densities with the same package and 
with an identical pinout. When a range of footprint-compatible devices is available, 
users have the ability to migrate a given design to a higher or lower density device 
without changing the printed circuit board (PCB), thereby lowering the risk 
associated with initial device selection. If the selected device turns out to be too 
small, the design is migrated to a larger device. If the selected device is too big, the 
design can be moved to a smaller device. In either case, with footprint-compatible 
devices, potentially expensive and time-consuming changes to the PCB are 
avoided.

SoC Course WS 2002/2003 Week #2

page 15



FPGA Implementation Overhead
Having a gate-count metric for a device, helps to estimate the overhead created by 
the programmable logic fabric, compared to a standard-cell ASIC.
First, we calculate the number of configuration bits required for a single logic slice. 
The block RAM bits are excluded from this calculation, as the block RAM 
implementation is close to the ideal implementation and therefore can be directly 
compared between ASICs and FPGAs.

2,452# of slices

1,278,496bits used for logic

544bits per slice

57,344Block RAM bits

1,335,840config file size

b i t sResou rce

Table 6: Configuration Bits per Slice
Each configuration bit has to be stored in a single flip-flop. This flip-flop in turn, 
controls a specific attribute of the logic cell‘s behavior. Assuming every bit drives a 
single additional gate is very conservative.

2 , 7 2 0gates per slice

544behavior
544 bits/ slice
@ 1 gate/ bit

2,176config storage
544 bits/ slice
@ 4 gates/ bit

gatesResource

Table 7: Gates per Slice
These gates numbers may be divided by the typical gates per slice to gain an 
impression of the ìgates per gatesî implementation overhead. As the feature of 
distributed RAM is part of the overhead, we have to take it into account here.

5 9implementation overhead

46.4average gates per slice
0.8 x 26 + 0.2 x 128

2,720gates per slice
gatesResource

Table 8: Implementation Overhead
Taking the square root of this result, gives an impression of the overhead in 
geometric units. The overhead of 59 implies, that a 0.15-micron FPGA easily 
reaches die size parity with a 1.2-micron standard-cell ASIC.

SoC Course WS 2002/2003 Week #2

page 16



Performance Characteristics
According to the data sheets, Spartan-II devices provide system clock rates up to 
200 MHz and internal performance as high as 333 MHz. This section provides the 
performance characteristics of some common functions. Unlike the data sheet 
figures, these examples have been described in VHDL and ran through the 
standard synthesis and implementation tools to achieve an understanding of the 
real world performance.

156
93
99

115
138

82
90

118

139pad-LUT-pad
8832:1 Mux
9916:1 Mux

1138:1 Mux
1274:1 Mux

7464-bit Address Decoder
8732-bit Address Decoder

10916-bit Address Decoder
XC2S200E-6XC2S200-5

Function Pin-to-Pin (w/ IO delays) [MHz]

Table 9: Pin-to-Pin Performance Spartan-II vs. Spartan-IIE
Table 9 provides pin-to-pin values including IOB delays; that is, delay through the 
device from input pin to output pin. In the case of multiple inputs and outputs, the 
worst delay is reported; all values are reported in MHz.
Table 10 shows internal (register-to-register) performance. Again, values are 
reported in MHz.
For all performance data it should be remembered, that about 50% of the delays 
are caused by routing delays. The routing delays are highly dependent on device 
utilization and the quality of the place & route process.

111
121
112
211
227
407
171
216
295
328
157
199
232

7264-bit Accumulator
8864-bit Counter
7764-bit Adder

17516-bit Adder
1838-bit Adder
285Register-LUT-Register
15532:1 Mux
18016:1 Mux
2308:1 Mux
2374:1 Mux
12464-bit Address Decoder
14432-bit Address Decoder
18116-bit Address Decoder

XC2S200E-6XC2S200-5
Register-to-Register [MHz]Function

Table 10: Register-to-Register Performance Spartan-II vs. Spartan-IIE

SoC Course WS 2002/2003 Week #2

page 17



FPGA design flow
Design Entry

Design Entry is the process of creating the design and entering it into the 
development system. The following methods are widely used for design entry:

HDL Editor
State Machine Editor
Block Diagram Editor

Typing a design into an HDL Editor is the most obvious way of entering high-level 
languages like VHDL into the development system. Recent editors offer 
functionality like syntax highlighting, auto completion or language templates to 
speed-up design entry. The main advantage of using an HDL Editor for design 
entry is, that text files are simple to share across tools, platforms and sites. On the 
other side, text may not be the most convenient way of editing a design; however 
this is highly dependent on the design.

Figure 25: HDL Editor

SoC Course WS 2002/2003 Week #2

page 18



For creating finite state machines, special editors are available. Using these editors 
is a convenient way of creating FSMs by graphical entry of bubble diagrams. Most 
tools create VHDL from the graphics representation, but hide this process 
completely from the user. The main advantage is, that the graphical representation 
is much easier to understand and maintain. On the other side, sharing a design 
across tool or platform boundaries may be difficult.

Figure 26: FSM Editor

SoC Course WS 2002/2003 Week #2

page 19



For creating structural designs, block diagram editors are available. Like FSM 
editors, these tools create VHDL or EDIF from the graphical representation and 
hide this process from the user. Again, the main advantage is, that the graphical 
representation is easier to understand and maintain, with the drawback of a reduced 
compatibility across tool or platform boundaries.

Figure 27: Block Diagram Editor

SoC Course WS 2002/2003 Week #2

page 20



Behavioral Simulation
After design entry, the design is verified by performing behavioral simulation. To 
do so, a high-level or behavioral simulator is used, which executes the design by 
interpreting the VHDL code like any other programming language, i.e. regardless of 
the target architecture. At this stage, FPGA development is much like software 
development; signals and variables may be watched, procedures and functions 
may be traced, and breakpoints may be set. The entire process is very fast, as the 
design is not synthesized, thus giving the developer a quick and complete 
understanding of the design. The downside of behavioral simulation is, that specific 
properties of the target architecture, namely timing and resource usage are not 
covered.

Synthesis
Synthesis is the process of translating VHDL to a netlist, which is built from a 
structure of macros, e.g. adders, multiplexers, and registers. Chip synthesizers 
perform optimizations, especially hierarchy flattening and optimization of 
combinational paths. Specific cores, like RAMs or ROMs are treated as black 
boxes. Recent tools can duplicate registers, perform re-timing, or optimize their 
results according to given constraints.

Post-Synthesis Simulation
After performing chip synthesis, post-synthesis simulation is performed. Timing 
information is either not available, or preliminary based on statistical assumptions 
which may not reflect the actual design. As the design hierarchy is flattened and 
optimized, tracing signals is difficult. Due to the mapping of the design into very 
basic macros, simulation time is lengthy. When post-synthesis results differ from 
behavioral simulation, most likely initialization values have been omitted, or don‘t-
cares have been resolved in unexpected ways.

Implementation
Implementation is the process of translating the synthesis output into a bitstream 
suited for a specific target device. This process consists of the following steps:

translation
mapping
place & route

During translation, all instances of target-specific or external cores, especially RAMs 
and ROMs are resolved. This step is much like the linking step in software 
development. The result is a single netlist containing all instances of the design.
During mapping, all macro instances are mapped onto the target architecture 
consisting of LUTs, IOBs, and registers. With this step completed, the design is 
completely described in primitives of the target architecture.
During place & route, all instances are assigned to physical locations on the silicon. 
This is usually an iterative process, guided by timing constraints provided by the 
designer. The process continues, until the timing constraints are either met, or the 
tool fails to further improve the timing.

SoC Course WS 2002/2003 Week #2

page 21



Timing Simulation
After implementation, all timing parameters are known, therefore a real timing 
simulation may be performed. Timing simulation is a lengthy task, as the structure of 
the silicon including timing is simulated. Furthermore, it is difficult to create 
testbenches, which exercise the critical timing paths. For this reason, most 
designers do not perform timing simulation, but a combination of behavioral 
simulation and static timing analysis.

Static Timing Analysis
Static timing analysis computes the timing of combinational pathes between 
registers and compares it against the timing constraints provided by the designer. 
The confidence level of this method depends on the coverage and correctness of 
the timing constraints. However, for synchronous designs with a single clock 
domain, static timing analysis may render timing simulation obsolete.

Figure 28: Timing Constraints

SoC Course WS 2002/2003 Week #2

page 22



Intellectual Property
What are IP-Cores?

In the terminology of a chip designer, IP-Cores are building blocks of intellectual 
property. These blocks encapsulate specific standard functionality of a chip in a 
way much like standard circuits do on a PCB. The intended use of IP-Cores is in 
both FPGA and ASIC type devices as part of a system-on-a-chip design 
solution.

Why use IP-Cores?
While semiconductor technology is rapidly evolving, hardware designers are faced 
with a new dimension of problems:

Increased design effort. Forced by the embedded revolution with virtually 
every digital hardware product using sophisticated, brand-new and 
microprocessor controlled technology, design effort moves quickly along an 
upwards spiral.
Shortened product life cycles. At the same time, product life cycles are 
getting shorter, especially in competitive business areas like digital consumer 
products.
Increased design risk. The obvious answer to the above facts is to start 
product development earlier than ever before, resulting in leading-edge 
product design being started before standards are fully established. This in 
turn dramatically increases design risk.

One solution to address these issues is the use of IP-Cores. Using IP-Cores adds 
the following beneficial properties to development:

Built-in expert know-how. Building up the expertise required to successfully 
master challenging technology is a time-consuming task. IP-Cores are 
designed by experts, incorporating IP-Cores into your design gives access 
to their expert skills.
Built-in confidence. Testing hardware under worst-case conditions is another 
time-consuming task. IP-Cores are standard products which ran through a 
variety of design-flows, were evaluated by lots of skilled engineers, and 
have been applicated in several state-of-the-art products. This creates the 
confidence of proven functionality.
Built-in future. IP-Cores are fully documented modules, which ship with source 
code and test bench available. No risk of discontinued circuits, no problem 
with rotating employees. Maintenance of a design is possible- even years 
later with a new design team.
Built-in profession. With standard circuits being implemented in IP-Cores 
designers come back to their real profession as engineers: Concentrating on 
designing a unique and distinctive product.

Figure 29: Building a system with IP-Cores

SoC Course WS 2002/2003 Week #2

page 23



The future of FPGA technology
Microprocessor Systems

PPC405 core
Digital Signal Processing

embedded Multipliers
I/O Processing

Rocket I/O
DCI

Figure 30: Embedded PowerPC

SoC Course WS 2002/2003 Week #2

page 24



Figure 31: Embedded Multipliers

Figure 32: Rocket I/Os

SoC Course WS 2002/2003 Week #2

page 25



Figure 33: Digitally Controlled Impedance

SoC Course WS 2002/2003 Week #2

page 26


